Sebelum kita masuk ke latihan soal, terlebih dahulu kita akan memahami beberapa konsep penting, seperti mencari gradien, sifat-sifat gradien dan rumus dalam mencari persamaan garis singgung. Setelah itu baru akan dilanjutkan dengan kumpulan soal tentang persamaan garis singgung pada kurva.
Mencari Nilai Gradien Garis
Gradien garis disimbolkan dengan "m" dapat dicari nilainya berdasarkan persamaan garisnya, dimana : Jika persamaan y = ax + b ⇒ m = a
Jika persamaan ax+by=c ⇒ m = -
Jika melalui dua titik, misal (x1,y1) dan (x2,y2) ⇒ m =
Jika membentuk sudut α terhadap sumbu-x positif ⇒ m = tan α
Jika terdapat kurva y = f(x) disinggung oleh sebuah garis di titik (x1,y1) ⇒ m = f'((x1)
Jika persamaan ax+by=c ⇒ m = -
a b
Jika melalui dua titik, misal (x1,y1) dan (x2,y2) ⇒ m =
(y2 - y1) (x1 - x2)
Jika membentuk sudut α terhadap sumbu-x positif ⇒ m = tan α
Jika terdapat kurva y = f(x) disinggung oleh sebuah garis di titik (x1,y1) ⇒ m = f'((x1)
Untuk gradien dua garis lurus, berlaku ketentuan :
- jika saling sejajar maka m1 = m2
- jika saling tegak lurus maka m1 . m2 = -1 atau m1 = -1 m2
Persamaan Garis Singgung Kurva
m = f'(x1)
. Sementara itu x1 dan y1 memiliki hubungan y1 = f(x1). Sehingga persamaan garis singgungnya bisa dinyatakan dengan y – y1 = m(x – x1).
Contoh Soal Persamaan Garis Singgung Kurva
Soal No.1Carilah gradien garis singgung kurva f(x) = 5x2 – 8x + 4 di titik(2, 8) ?
Pembahasan
Titik singgung dititik (2, 8), maka x1 = 2
Dengan demikian, gradien garis adalah : m = f’(x1)
m = 10x1 – 8
m = 10(2) – 8
m = 12
Dengan demikian, gradien garis adalah : m = f’(x1)
m = 10x1 – 8
m = 10(2) – 8
m = 12
Soal No.2
Tentukanlah persamaan garis singgung untuk kurva y = x2 + 2x di titik (1,3)
Pembahasan
f(x) = x2 + 2x
f'(x) = 2x + 2
m = f '(1) = 2(1) + 2 = 4
m = 4
Jadi, persamaan garis singgungnya adalah :
y – y1 = m(x – x1)
y − 3 = 4(x − 1)
y − 3 = 4x − 4
y = 4x − 1
f'(x) = 2x + 2
m = f '(1) = 2(1) + 2 = 4
m = 4
Jadi, persamaan garis singgungnya adalah :
y – y1 = m(x – x1)
y − 3 = 4(x − 1)
y − 3 = 4x − 4
y = 4x − 1
Soal No.3
Tentukanlah Persamaan garis singgung kurva y = 2x - 3x2 di titik dengan absis 2
Pembahasan
Absis itu adalah sumbu-x, jadi x =2:
Langkah 1 : Cari titik singgung dengan memasukkan nilai x = 2
y = 2x - 3x2
y = 2(2) − 3(2)2
y = −8
Jadi titik singgung : (2, −8)
Langkah 2: Cari nilai gradien
f(x) = 2x − 3x2
f '(x) = 2 − 6x
m = f '(2) = 2 − 6(2) = −10
m = −10
Jadi, persamaan garis singgungnya adalah :
y – y1 = m(x – x1)
y − (−8) = −10(x − 2)
y + 8 = −10x + 20
y = −10x + 12
Langkah 1 : Cari titik singgung dengan memasukkan nilai x = 2
y = 2x - 3x2
y = 2(2) − 3(2)2
y = −8
Jadi titik singgung : (2, −8)
Langkah 2: Cari nilai gradien
f(x) = 2x − 3x2
f '(x) = 2 − 6x
m = f '(2) = 2 − 6(2) = −10
m = −10
Jadi, persamaan garis singgungnya adalah :
y – y1 = m(x – x1)
y − (−8) = −10(x − 2)
y + 8 = −10x + 20
y = −10x + 12
Soal No.4
Tentukanlah Persamaan garis singgung kurva y = 2x3 - 4x2 di titik berabsis 2
Pembahasan
Absis itu adalah sumbu-x, jadi x =2:
Langkah 1 : Cari titik singgung dengan memasukkan nilai x = 2
y = 2x3 - 4x2
y = 2(2)3 − 4(2)2
y = 16 - 16
y = 0
Jadi titik singgung : (2, 0)
Langkah 2: Cari nilai gradien
f(x) = 2x3 - 4x2
f '(x) = 6x2 - 8x
m = f '(2) = 6(2)2 − 8(2)
m = 24 - 16
m = 8
Jadi, persamaan garis singgungnya adalah :
y – y1 = m(x – x1)
y − 0 = 8(x − 2)
y = 8x - 16
Langkah 1 : Cari titik singgung dengan memasukkan nilai x = 2
y = 2x3 - 4x2
y = 2(2)3 − 4(2)2
y = 16 - 16
y = 0
Jadi titik singgung : (2, 0)
Langkah 2: Cari nilai gradien
f(x) = 2x3 - 4x2
f '(x) = 6x2 - 8x
m = f '(2) = 6(2)2 − 8(2)
m = 24 - 16
m = 8
Jadi, persamaan garis singgungnya adalah :
y – y1 = m(x – x1)
y − 0 = 8(x − 2)
y = 8x - 16
Soal No.5
Tentukanlah Persamaan garis singgung kurva y = x2 di titik berabsis -2
Pembahasan
Absis itu adalah sumbu-x, jadi x = -2:
Langkah 1 : Cari titik singgung dengan memasukkan nilai x = -2
y = x2
y = (-2)2
y = 4
Jadi titik singgung : (-2, 4)
Langkah 2: Cari nilai gradien
f(x) = x2
f '(x) = 2x
m = f '(-2) = 2(-2)
m = -4
Jadi, persamaan garis singgungnya adalah :
y – y1 = m(x – x1)
y − 4 = -4(x − (-2))
y - 4 = -4x - 8
y = -4x - 4
Langkah 1 : Cari titik singgung dengan memasukkan nilai x = -2
y = x2
y = (-2)2
y = 4
Jadi titik singgung : (-2, 4)
Langkah 2: Cari nilai gradien
f(x) = x2
f '(x) = 2x
m = f '(-2) = 2(-2)
m = -4
Jadi, persamaan garis singgungnya adalah :
y – y1 = m(x – x1)
y − 4 = -4(x − (-2))
y - 4 = -4x - 8
y = -4x - 4
Soal No.6
Tentukanlah persamaan garis singgung untuk kurva y = 3 + 2x - x2 sejajar dengan garis 4x + y = 3
Pembahasan
Langkah 1 : Cari nilai m1
y = 3 + 2x - x2
m1 = f'(x) = -2x + 2
m1 = -2x + 2
Langkah 2 : Cari nilai m2
4x + y = 3
y = -4x + 3
m2 = -4 (Inga !! Jika y = ax + b ⇒ m = a )
Langkah 3 : Cari nilai x
Karena kedua garis saling sejajar maka berlaku :
m1 = m2
-2x + 2 = -4
-2x = -6
x = 3
Langkah 4 : Cari nilai y dengan memasukkan nilai x = 3
y = 3 + 2x - x2
y = 3 + 2(3) - 32
y = 3 + 6 - 9
y = 0
Sekarang kita telah memiliki titik singgung (3,0)
Langkah 4: Persamaan garis singgung
y – y1 = m(x – x1)
y - 0 = -4(x - 3)
y = -4x + 12
y = 3 + 2x - x2
m1 = f'(x) = -2x + 2
m1 = -2x + 2
Langkah 2 : Cari nilai m2
4x + y = 3
y = -4x + 3
m2 = -4 (Inga !! Jika y = ax + b ⇒ m = a )
Langkah 3 : Cari nilai x
Karena kedua garis saling sejajar maka berlaku :
m1 = m2
-2x + 2 = -4
-2x = -6
x = 3
Langkah 4 : Cari nilai y dengan memasukkan nilai x = 3
y = 3 + 2x - x2
y = 3 + 2(3) - 32
y = 3 + 6 - 9
y = 0
Sekarang kita telah memiliki titik singgung (3,0)
Langkah 4: Persamaan garis singgung
y – y1 = m(x – x1)
y - 0 = -4(x - 3)
y = -4x + 12
Soal No.7
Carilah persamaan garis singgung pada kurva y = x3 + 10 di titik yang berordinat 18 ?
Pembahasan
Ordinat itu adalah sumbu-y, jadi y = 18
Langkah 1 : Cari titik singgung dengan memasukkan nilai y = 18
y = x3 + 10
18 = x3 + 10
x3 = 18 - 10
x3 = 8
x = 2
Jadi titik singgung : (2,18)
Langkah 2: Cari nilai gradien
f(x) = x3 + 10
f'(x) = 3x2
m = f'(2) = 3(2)2
m = 12
Jadi,Persamaan garis singgungnya adalah y – y1 = m(x – x1)
y - 18 = 12(x - 2)
y - 8 = 12x - 24
y = 12x - 16
Langkah 1 : Cari titik singgung dengan memasukkan nilai y = 18
y = x3 + 10
18 = x3 + 10
x3 = 18 - 10
x3 = 8
x = 2
Jadi titik singgung : (2,18)
Langkah 2: Cari nilai gradien
f(x) = x3 + 10
f'(x) = 3x2
m = f'(2) = 3(2)2
m = 12
Jadi,Persamaan garis singgungnya adalah y – y1 = m(x – x1)
y - 18 = 12(x - 2)
y - 8 = 12x - 24
y = 12x - 16
Soal No.8
Carilah persamaan garis singgung pada kurva y = x2 - x + 3 di titik yang berordinat 5 ?
Pembahasan
Ordinat itu adalah sumbu-y, jadi y = 5
Langkah 1 : Cari titik singgung dengan memasukkan nilai y = 5
y = x2 - x + 3
5 = x2 - x + 3
x2 - x + 3 - 5 = 0
x2 - x - 2 = 0
(x - 2)(x + 1) = 0
x = 2 atau x = -1
Jadi terdapat dua titik singgung : (2,5) atau (-1,5)
Langkah 2: Cari nilai gradien
Nilai gradien untuk x = 2
f(x) = x2 - x + 3
f'(x) = 2x - 1
m = f'(2) = 2(2) - 1
m = 3
Nilai gradien untuk x = -1
f(x) = x2 - x + 3
f'(x) = 2x - 1
m = f'(-1) = 2(-1) - 1
m = -3
Langkah 3: Menentukan persamaan garis singgung
Karena kita memiliki dua titik singgung, tentunya akan ada dua persamaan garis singgung
Persamaan garis singgungnya untuk titik (2,5) dengan m = 3
y – y1 = m(x – x1)
y - 5 = 3(x - 2)
y = 3x - 6 + 5
y = 3x - 1
Persamaan garis singgungnya untuk titik (-1,5) dengan m = -3
y – y1 = m(x – x1)
y - 5 = -3(x - (-1))
y - 5 = -3x - 3
y = -3x + 2
Jadi, ada dua persamaan garis singgung, yaitu y = 3x - 1 atau y = -3x + 2
Langkah 1 : Cari titik singgung dengan memasukkan nilai y = 5
y = x2 - x + 3
5 = x2 - x + 3
x2 - x + 3 - 5 = 0
x2 - x - 2 = 0
(x - 2)(x + 1) = 0
x = 2 atau x = -1
Jadi terdapat dua titik singgung : (2,5) atau (-1,5)
Langkah 2: Cari nilai gradien
Nilai gradien untuk x = 2
f(x) = x2 - x + 3
f'(x) = 2x - 1
m = f'(2) = 2(2) - 1
m = 3
Nilai gradien untuk x = -1
f(x) = x2 - x + 3
f'(x) = 2x - 1
m = f'(-1) = 2(-1) - 1
m = -3
Langkah 3: Menentukan persamaan garis singgung
Karena kita memiliki dua titik singgung, tentunya akan ada dua persamaan garis singgung
Persamaan garis singgungnya untuk titik (2,5) dengan m = 3
y – y1 = m(x – x1)
y - 5 = 3(x - 2)
y = 3x - 6 + 5
y = 3x - 1
Persamaan garis singgungnya untuk titik (-1,5) dengan m = -3
y – y1 = m(x – x1)
y - 5 = -3(x - (-1))
y - 5 = -3x - 3
y = -3x + 2
Jadi, ada dua persamaan garis singgung, yaitu y = 3x - 1 atau y = -3x + 2
Soal No.9
Carilah persamaan garis singgung pada kurva y = x2 - 5x + 6 jika gradien garis singgungnya adalah 3 ?
Pembahasan
Langkah 1: Cari titik singgungnya
f(x) = x2 - 5x + 6
f'(x) = 2x - 5
m = f'(x)
3 = 2x - 5
2x = 3 + 5
x = 4
y = x2 - 5x + 6
y = 42 - 5(4) + 6
y = 16 - 20 + 6
y = 2
Jadi titik singgung : (4,2)
Langkah 2: Menentukan persamaan garis singgung
y – y1 = m(x – x1)
y - 2 = 3(x - 4)
y - 2 = 3x - 12
y = 3x - 10
f(x) = x2 - 5x + 6
f'(x) = 2x - 5
m = f'(x)
3 = 2x - 5
2x = 3 + 5
x = 4
y = x2 - 5x + 6
y = 42 - 5(4) + 6
y = 16 - 20 + 6
y = 2
Jadi titik singgung : (4,2)
Langkah 2: Menentukan persamaan garis singgung
y – y1 = m(x – x1)
y - 2 = 3(x - 4)
y - 2 = 3x - 12
y = 3x - 10
Soal No.10
Tentukanlah persamaan garis singgung kurva y = x3 - 3x2 - 5x + 10 jika gradien garis singgungnya adalah 4 ?
Pembahasan
Langkah 1: Cari titik singgungnya f(x) = x3 - 3x2 - 5x + 10
f'(x) = 3x2 - 6x - 5
m = f'(x)
4 = 3x2 - 6x - 5
3x2 - 6x - 9 = 0 (lalu kita bagi 3)
x2 - 2x - 3 = 0
(x - 3)(x + 2) = 0
x = 3 atau x = -2
Untuk x = 3
y = x3 - 3x2 - 5x + 10
y = 33 - 3(3)2 - 5(3) + 10
y = 27 -27 - 15 + 10
y = -5
Titik singgung pertama (3,-5)
Untuk x = -2
y = x3 - 3x2 - 5x + 10
y = (-2)3 - 3(-2)2 - 5(-2) + 10
y = -8 - 12 + 10 + 10
y = 0
Titik singgung kedua (-2,0)
Langkah 2: Menentukan persamaan garis singgung
Untuk titik singgung pertama (3,-5)
y – y1 = m(x – x1)
y – (-5) = 4(x – 3)
y + 5 = 4x -12
y = 4x -17
Untuk titik singgung kedua (-2,0)
y – y1 = m(x – x1)
y – 0 = 4(x – (-2))
y = 4x + 8
Jadi ada dua persamaan garis singgung yaitu :
y = 4x -17 dan y = 4x + 8
f'(x) = 3x2 - 6x - 5
m = f'(x)
4 = 3x2 - 6x - 5
3x2 - 6x - 9 = 0 (lalu kita bagi 3)
x2 - 2x - 3 = 0
(x - 3)(x + 2) = 0
x = 3 atau x = -2
Untuk x = 3
y = x3 - 3x2 - 5x + 10
y = 33 - 3(3)2 - 5(3) + 10
y = 27 -27 - 15 + 10
y = -5
Titik singgung pertama (3,-5)
Untuk x = -2
y = x3 - 3x2 - 5x + 10
y = (-2)3 - 3(-2)2 - 5(-2) + 10
y = -8 - 12 + 10 + 10
y = 0
Titik singgung kedua (-2,0)
Langkah 2: Menentukan persamaan garis singgung
Untuk titik singgung pertama (3,-5)
y – y1 = m(x – x1)
y – (-5) = 4(x – 3)
y + 5 = 4x -12
y = 4x -17
Untuk titik singgung kedua (-2,0)
y – y1 = m(x – x1)
y – 0 = 4(x – (-2))
y = 4x + 8
Jadi ada dua persamaan garis singgung yaitu :
y = 4x -17 dan y = 4x + 8
Soal No.11
Tentukanlah persamaan garis singgung kurva y = 3 - x2 yang tegak lurus terhadap garis 4y = x + 1 ?
Pembahasan
Langkah 1 : Cari nilai m1
y = 3 - x2
m1 = f'(x) = -2x
m1 = -2x
Langkah 2 : Cari nilai m2
4y = x + 1
y =
m2 =
Langkah 3 : Cari nilai x
Karena kedua garis tegak lurus maka berlaku :
m1 . m2 = -1
m1 .
m1 = -4
Masukkan nilai m1 ke dalam persamaan langkah-1 :
m1 = -2x
-4 = -2x
x = 2
Langkah 4 : Cari nilai y dengan memasukkan nilai x = 2
y = 3 - x2
y = 3 - 22
y = 3 - 4
y = -1
Jadi titik singgungnya : (2,-1)
Langkah 5 : Menentukan persamaan garis singgung
y - y1 = m(x - x1)
y - (-1) = -4(x - 2)
y + 1 = -4x + 8
y = -4x + 7
Jadi persamaan garis singgungnya : y = -4x + 7
y = 3 - x2
m1 = f'(x) = -2x
m1 = -2x
Langkah 2 : Cari nilai m2
4y = x + 1
y =
1 4
x + 1 4
m2 =
1 4
(Ingat !! Jika y = ax + b ⇒ m = a)Langkah 3 : Cari nilai x
Karena kedua garis tegak lurus maka berlaku :
m1 . m2 = -1
m1 .
1 4
= -1 m1 = -4
Masukkan nilai m1 ke dalam persamaan langkah-1 :
m1 = -2x
-4 = -2x
x = 2
Langkah 4 : Cari nilai y dengan memasukkan nilai x = 2
y = 3 - x2
y = 3 - 22
y = 3 - 4
y = -1
Jadi titik singgungnya : (2,-1)
Langkah 5 : Menentukan persamaan garis singgung
y - y1 = m(x - x1)
y - (-1) = -4(x - 2)
y + 1 = -4x + 8
y = -4x + 7
Jadi persamaan garis singgungnya : y = -4x + 7
Soal No.12
Persamaan garis menyinggung kurva y = x2 - 3x - 4 di titik (4,0) adalah .....
a. y = 5x + 20
b. y = 5x - 20
c. y = -5x + 20
d. y = -5x - 20
Pembahasan
y = x2 - 3x - 4
y' = 2x - 3
m = y '(4) = 2(4) - 3 = 5
m = 5
Jadi, persamaan garis singgungnya adalah :
y – y1 = m(x – x1)
y - 0 = 5 (x - 4)
y = 5x - 20
Jawab c:
Sumber https://bfl-definisi.blogspot.com/y' = 2x - 3
m = y '(4) = 2(4) - 3 = 5
m = 5
Jadi, persamaan garis singgungnya adalah :
y – y1 = m(x – x1)
y - 0 = 5 (x - 4)
y = 5x - 20
Jawab c: