Definisi: Misalkan (G,*) grup dan $a \in G$. Order dari a, ditulis $o(a)$, adalah bilangan bulat positif terkecil n sedemikian sehingga $a^n=e$. Jika tidak ada bilangan n yang demikian maka dikatakan order a adalah nol atau tak hingga.
Teorema: Misalkan (G,*) grup dan $a \in G$ dengan $o(a)=n$.
1) Jika $a^m=e untuk suatu bilangan bulat positif m, maka n membagi m
2) Untuk setiap bilangan bulat positif t, berlaku $o(a^t)=n/FPB(t,n)$
Bukti 1): Karena n bilangan asli terkecil demikian sehingga $a^n=e$, maka n harus lebih kecil atau sama dengan m. Andaikan n tidak membagi m, maka menurut algoritma pembagian m=np+q dimana 0 < q < n.
Pandang!
$a^m=e$
$a^(np+q)=e$
$a^(np) a^q=e$
Jadi diperoleh $a^q$ juga sama dengan e dimana 0 < q < n. Hal ini bertentangan dengan kenyataan bahwa n adalah yang terkecil sedemikian hingga $a^n=e$. Jadi, pengandaian salah yang benar adalah n membagi m.
Bukti 2): Misalkan KPK dari t dan n adalah m. Hal ini berarti bahwa t membagi m dan n membagi m. Akibatnya, $a^m=e$. Jadi, orde dari $a^t$ adalah p dimana t.p=m. Andaikan diketahui bahwa FPB dari t dan m adalah q. Maka, menurut suatu teorema dalam teori bilangan m=(t.n)/q. Dengan demikian orde dari $a^t$ adalah:
p=m/t
p={(t.n)/q}/t
p=n/q.
Karena q adalah FPB dari t dan n maka terbukti.